If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-27x-56=0
a = 3; b = -27; c = -56;
Δ = b2-4ac
Δ = -272-4·3·(-56)
Δ = 1401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{1401}}{2*3}=\frac{27-\sqrt{1401}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{1401}}{2*3}=\frac{27+\sqrt{1401}}{6} $
| (x+5)^2=49 | | 2a-4=34 | | b/7+1/2=15 | | 209-24x=19 | | 9=+2p | | 3/5+2=t | | x+4x+3x=142 | | 0.1(2y-4)=0.2(9y-15) | | 9x+6=11x-4 | | 4y-7=35 | | 14x-13=14(x+13) | | 5p^2-3p-14=-6p | | -3c+8=-13 | | u/2-15=6 | | 46=x+6 | | x2-8x=24 | | 3n^2-5=2n | | 9n^2-8=-29 | | 6x+5=29+10x | | 2d–2=2 | | f(-16)=3-(-16=2)^2 | | -390=26c+52 | | -34=v+42=5v | | 2-3(1-x)=x+7x | | -j=5 | | 9(y-2+4=31 | | 10n^2-10=-21n | | 3(4x+5)=-23+14 | | m–2=1 | | 6-4x=59 | | 74+12x=278 | | h-6=-5 |